Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 25: 100539, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621317

RESUMO

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.

2.
Int Immunopharmacol ; 113(Pt A): 109403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461598

RESUMO

Growing evidence describes the host immune response mechanism involved in malaria. Despite the spread of drug resistance, chloroquine (CQ) remains the main antimalarial drug in most countries in Latin America and Asia. Studies have indicated an immunomodulatory activity of CQ, however, the potential implications for CQ on immunological memory recognizing the malaria parasite are still being elucidated. Our study suggests that CQ treatment significantly delayed the initiation of parasitemia during infection of mice with the rodent malaria parasite, Plasmodium chabaudi (P.c.). Additionally, there was a decrease in T follicular helper cells (Tfh), CD4+ effector memory T cells, memory B cells (MBC), IgG2a memoryB cells, along with IgG2a plasma cells; while antibody production was not affected atthe observation time points. After PD-1 blockade and CQ treatment, no reductions in the numbers of CD4+ effector memory T cells, MBC, and IgG2a memoryB cells were observed compared with the P.c. group. Therefore, CQ might regulate immunological memory via the PD-1/PD-L1 signaling pathway. Compared with antibody secretion, the inhibition of CQ on immune memory cells was a more sensitive indicator.


Assuntos
Malária , Plasmodium chabaudi , Animais , Camundongos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Malária/tratamento farmacológico , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...